The use of mathematics in social sciences, including economics, has increased dramatically since the 1930s. Many areas used to be analyzed in a literary sort of way have become amenable to mathematical modelling. The progress in the development of computer hardware and software has allowed social scientists to explore more complex systems. Social sciences and economics themselves also evolve. They require an increase in precision with which researchers could communicate the facts that they have discovered. In this sense, mathematics is like a language, a means of communication, using which the approach of mathematical modeling tries to explain a complex socio-economic system. Although useful—in some cases also inevitable—linking mathematical models with economic concepts and theories is often challenging. For many, it is a strenuous task. This book is intended to help facing the challenge. By using selected issues and examples, the main purpose is to show how mathematical models are used for socio-economic analysis. Readers and students interested in understanding and building mathematical models for such analysis will benefit from reading this book.

Professor Iwan Azis has been teaching at Cornell University since 1992. He began to spend a semester each year at the Universitas Indonesia since 2015. In 2006 he was awarded "Distinguished Scholar in Regional Science, Financial Economics, and Economic Modeling." He is the author of "Crisis, Complexity and Conflict" from Emerald (2009), the lead author of "Managing Elevated Risk" from Springer (2015), and the author of "Coping With the Dangerous Component of Capital Flows" in an edited book Critical Junctures in Mobile Capital by Cambridge University Press (2018).

REVISED EDITION

Department of Economics Faculty of Economics and Business Universitas Indonesia

Jl. Prof. Dr. Sumitro Djojojadikusumo Kampus UI Depok 16424, Indonesia Tel: +62 21 - 727 2425, 727 2646, Fax. +62 21 - 786 3559 Email: depie@ui.ac.id, Web, http://econ.feb.vi.ac.id

IWAN J. AZIS

Mathematical Models for Economic Analysis

Selected Topics and Applications

MATHEMATICAL MODELS FOR ECONOMIC ANALYSIS Selected Topics and Applications

Iwan J. Azis

Department of Economics Faculty of Economics and Business

Universitas Indonesia

Copyright ©2018 by Department of Economics Faculty of Economics and Business Universitas Indonesia.

Published by Department of Economics Faculty of Economics and Business Universitas Indonesia.

ISBN: 978-602-53350-0-6

Author's right and publisher's right are protected by 2018 edition Law

Author: Iwan Jaya Azis Cover: Iwan Jaya Azis

Gedung Departemen Ilmu Ekonomi, Kampus Widjojo Nitisastro Jl. Prof. Dr. Sumitro Djojohadikusumo, Kampus UI Depok 16424, Indonesia Tel. +62 21 - 727 2425, 727 2646, Fax. +62 21 - 786 3559 Email. depie@ui.ac.id, Web. http://econ.feb.ui.ac.id

CONTENTS IN BRIEF

I	Introduction	1
II	Optimization: From Linear to Non-Linear and Dynamic	5
III	Dynamic System: Differential and Difference Equations	27
IV	Economy-Wide Models: Input-Output and Social Accounting Matrix	53
v	Structural Path Analysis and Financial SAM	71
VI	Endogenous Prices: Computable General Equilibrium (CGE)	103
VII	From SAM-Based CGE to FSAM-Based Financial CGE	141
VIII	Financial CGE	173
IX	FCGE Application for Climate Change and Shortcomings	211
Х	Game Theory	239
XI	Analytic Hierarchy Process (AHP)	265
XII	Analytic Network Process (ANP)	303

CONTENTS

List o	of Figu	es		ix
List o	of Table	s		xv
Prefa	ice			xix
I	Intro	duction		1
II	Optin	nization	From Linear to Non-Linear and Dynamic	5
	II.1	Introduc	tion	5
	II.2	Non-Lir	near Programming	5
		II.2.1	The Kuhn-Tucker conditions	6
		II.2.2	Example: Peak-Load Pricing	8
		II.2.3	Example: Managing Capital Flows	8
	II.3	Dynami	c Programming: Regional Investment Allocation (RIA)	10
		II.3.1	Optimal Control: RIA with Continuous Function	13
		II.3.2	Maximizing Income in Terminal Year	16
		II.3.3	Maximizing Per-Capita Consumption During Planning Period	19
	II.4	Convex	Non-Convex Programming: RIA with Economies of Scale	20
	II.5	Final Re	emarks	24
III	Dyna	mic Sys	tem: Differential and Difference Equations	27
	III.1	Introduc	ction	27
				v

VI CONTENTS

VII	From	SAM-Based CGE to FSAM-Based Financial CGE	141
	VI.5	Final Remarks	129
		VI.4.4 Experiment: Elasticity of Substitution	126
		VI.4.3 Experiment: Pollution Tax	123
		VI.4.2 Data	122
		VI.4.1 CGE Pollution Model	118
	VI.4	An Applications of Standard CGE Models	118
		VI.3.4 Heckscher-Ohlin's Comparative Advantage Model	116
		VI.3.3 International Trade	113
		VI.3.2 Intermediate Inputs and Transport Cost	111
	. 1.0	VI.3.1 Examples of Simple CGE Model	108
	VI.2	What is CGE Model	107
	VI.2		105
	VI.1	Introduction	103
VI	Endo	genous Prices: Computable General Equilibrium (CGE)	103
	V.4	Final Remarks	89
		V.3.2 SPA on 1995 Indonesian FSAM	83
		V.3.1 Example: FSAM Multiplier	80
	V.3	Financial SAM	78
		V.2.2 Example: SPA of A Region	74
		V.2.1 Formulation	72
	V.2	SPA: Unraveling SAM Multiplier	72
	V .1	Introduction	71
v	Struc	tural Path Analysis and Financial SAM	71
	IV.5	Final Remarks	69
	IV.4	Economy-Wide Model: Social Accounting Matrix (SAM)	64
		IV.3.2 Forward and Backward Linkages	62
		IV.3.1 IO Production Function	59
	IV.3	Economy-Wide Models: Input-Output (IO)	55
	IV.2		53
	IV.1	Introduction	53
IV	Econ	omy-Wide Models: Input-Output and Social Accounting Mat	rix 53
	III.4	Final Remarks	45
		III.3.3 ICM Application with Constant Elasticity of Substitution	41
		III.3.2 ICM Application with Unit Elasticity of Substitution	35
		III.3.1 Assumptions and Specifications of the ICM Model	31
	III.2		30
	III.2	Differential Equations: Single and Simultaneous System	28

	CONTENTS	vii
	VII.1 Introduction	141
	VII.2 Core Equations of SAM-Based CGE	142
	VII.3 Model Applications	146
	VII.3.1 Terms-of-Trade Shock	146
	VII.3.2 Increased Capital Flows	149
	VII.4 CGE Multiplier Versus SAM Multiplier	151
	VII.5 Flow-of-Funds (FOF)	155
	VII.6 FSAM-Based Financial CGE	156
	VII.6.1 Household Portfolio Allocation and Monetary Block	156
	VII.6.2 Income Block	158
	VII.6.3 Poverty Block and Labor Market	159
	VII.7 Model Simulations	163
	VII.7.1 Aggregate Impact	163
	VII.7.2 Impact on Poverty and Income Distribution	165
	VII.8 Counterfactual Policy Scenarios	167
	VII.9 Final Remarks	169
VIII	Financial CGE	173
	VIII.1 Introduction	173
	VIII.2 Microeconomic and Social Impact of Macro Policy	174
	VIII.2.1 Simulations on the Effects of Monetary Policy	179
	VIII.2.2 Simulations on the Effects of Fiscal Policy	182
	VIII.3 Disintermediation: Monetary Policy Amid Behavior of Banks	186
	VIII.3.1 Credit Market Frictions, Balance Sheet Effects, and	
	Monopolistic Competition	187
	VIII.3.2 Asymmetric Information and Agency Cost	187
	VIII.3.3 Balance Sheet Effects and Firm's Investment	189
	VIII.3.4 Non-Marginal Cost Pricing in Imperfect Competition	190
	VIII.3.5 Effect on Distribution of Income and Poverty Estimates	191
	VIII.3.6 Simulation Results	192
	VIII.3.7 Counterfactual Simulations	197
	VIII.4 Capital Flows: Macro and Micro Effects and Income Distribution	201
	VIII.5 Final Remarks	207
IX	FCGE Application for Climate Change and Shortcomings	211
	IX.1 Introduction	211
	IX.2 Background: Climate Change Issues	212
	IX.2.1 Analysis Based on FCGE Simulations	213
	IX.2.2 Limitation: Ignoring the Discount Rate	220
	IX.3 Reassessing CGE/FCGE Models and Their Shortcomings	221
	IX.4 What Is the Alternative?	224
	IX.5 Final Remarks	226

VIII CONTENTS

X	Game	e Theory	239
	X.1	Introduction	239
	X.2	Decision Theory & Sequential-Simultaneous Games	240
	X.3	Interactive Games: Macro Policy Coordination	244
	X.4	Credibility In Macro Policy	246
	X.5	Signalling Games	248
	X.6	Coordination Games and Endogenous Institution	253
		X.6.1 The Nature of Endogenous Institution	253
		X.6.2 Coordination Game	255
	X.7	Experiments and Limitations of Game Theory	260
	X.8	Final Remarks	262
XI	Analy	tic Hierarchy Process (AHP)	265
	XI.1	Introduction	265
	XI.2	Scale and Subjectivity in AHP	266
	XI.3	Basic Math and Consistency of AHP	268
	XI.4	Steps and Procedures	270
	XI.5	AHP Applications	271
		XI.5.1 Example: Identifying Critical Factors in Decentralization	271
		XI.5.2 Example: Conflict Resolution	274
	XI.6	Final Remarks	280
XII	Analy	tic Network Process (ANP)	303
	XII.1	Introduction	303
	XII.2	From Hierarchy to Network: AHP to ANP	304
	XII.3	Simple Application: Revisiting the Analysis of Decentralization	308
	XII.4	Comparing AHP and ANP: Post-Project Evaluation of Infrastructure	308
	XII.5	Application With BOCR: Regional Financial Cooperation	323
		XII.5.1 Building the ANP Framework	324
		XII.5.2 Prioritizing Benefits, Opportunities, Costs and Risks	330
	XII.6	Sensitivity Analysis and Time Dependent Case	333
	XII.7	Final Remarks	336

LIST OF FIGURES

II.1	Local and Global Maximum	6
II.2	The Case of No-Switch	17
II.3	The Case of Switch	18
II.4	The Case of $\frac{1}{k^j} < \frac{1}{k^i}$	19
II.5	Convex and Nonconvex	20
II.6	Non-constant Return to Scale	22
II.7	Non-constant Return to Scale with Switch Function	23
III.1	Basic Framework of The Interregional Capital Movement (ICM) Model	30
III.2	Basic Framework of The Dynamic Interregional Capital Movement (ICM) Model	30
III.3	Time Path of Convergent Pattern	33
III.4	Time Path of Divergent Pattern	34
III.5	Time Path of Interregional Differential of Capital Returns	36
III.6	Phase Diagram of Capital Return Differential	37
III.7	Equalization of Factor Proportions	37
III.8	Time Path of Capital Return	39
		ix

X LIST OF FIGURES

III.9	Time Path of Capital Return: Convergence	40
III.10	Phase Plane	44
III.11	Trajectory of Capital Return	45
IV.1	Forecasting and Planning Model	54
IV.2	Isoquant of Different Production Functions	60
IV.3	Coefficient of Interdependence: China and Asia	63
IV.4	Interlinked Production, Factors, and Institutions	66
V .1	Direct Influence	73
V.2	Total Influence	73
V.3	Global Influence	74
V.4	Flow of SPA: Foreign Equity Shock	84
V.5	Flow of SPA: Foreign Debt Shock	87
V.6	Flow of SPA: Credit Shock	89
VI.1	Gain from Trade	115
VII.1	Nested Production	142
VII.2	Terms-of-Trade Shock with Zero Elasticity of Substitution	147
VII.3	Terms-of-Trade Shock with Infinite Elasticity of Substitution	148
VII.4	Effect of Capital Flows	149
VII.5	Household Portfolio Allocation	157
VII.6	Negative Impact of Exchange Rate Depreciation on In-come Distribution	160
VII.7	Impacts of Higher Interest Rate and Debt Resolution	163
VII.8	Income Distribution (Gini Index: Baseline = 1)	165
VII.9	Income Distribution: Benchmark and Counterfactuals	168
VII.10	Prices: Benchmark and Counterfactuals	169
VII.11	Price of Poverty Line: Benchmark and Counterfactuals	170
VIII.1	General Equilibrium Relations Under Expansionary Policy	175
VIII.2	General Equilibrium Relations Under Contractionary Policy	175
VIII.3	Monetary Policy Simulation with Low ρ : Indonesia's Real Income of the Poor (y axis in Rp bill)	180
VIII.4	Fiscal Policy Simulation with Low ρ : Indonesia's Real Income of the Poor (y-axis in Rp bill)	180

VIII.5	Monetary Policy Simulation with Low ρ : Thailand's Real Income of the Poor (y axis in Baht bill)	181
VIII.6	Fiscal Policy Simulation with Low ρ : Thailand's Real Income of the Poor (y axis in Baht bill)	181
VIII.7	Monetary Policy Simulation with Low ρ : Indonesia's Dynamic Slope GDP and Real Income of the Poor	181
VIII.8	Monetary Policy Simulation with Low ρ : Thailand's Dynamic Slope GDP and Real Income of the Poor	182
VIII.9	Fiscal Policy Simulation with Low ρ : Indonesia's Dynamic Slope of GDP and Real Income of the Poor	183
VIII.10	Fiscal Policy Simulation with Low ρ : Thailand's Dynamic Slope of GDP and Real Income of the Poor	183
VIII.11	Monetary Policy Simulation with High ρ : Indonesia's Real Income of the Poor	184
VIII.12	Fiscal Policy Simulation with High ρ : Indonesia's Real Income of the Poor	184
VIII.13	Monetary Policy Simulation with High ρ : Thailand's Real Income of the Poor	184
VIII.14	Fiscal Policy Simulation with High ρ : Thailand's Real Income of the Poor	185
VIII.15	Monetary Policy Simulation with High ρ : Thailand's Dynamic Slope GDP and Real Income of the Poor	185
VIII.16	Fiscal Policy Simulation with High ρ : Thailand's Dynamic Slope GDP and Real Income of the Poor	185
VIII.17	Monetary Policy Simulation with High ρ : Indonesia's Dynamic Slope GDP and Real Income of the Poor	186
VIII.18	Fiscal Policy Simulation with High ρ : Indonesia's Dynamic Slope GDP and Real Income of the Poor	186
VIII.19	Interest Rates and the Growth Rates of Real Credit and Investment	187
VIII.20	Real Investment Under FS and NFS: Before and After Interest Rate Shock	k193
VIII.21A	Trends of Credit: With and Without Agency Cost	194
VIII.21B	Trends of Real Investment: With and Without Agency Costs	195
VIII.22	Trends of Loan Interest Rates: With and Without Agency Costs	195
VIII.23	Three-Dimension Exhibits	196
VIII.24	Trends of Credit Following the Reduction of Interest Rates: With $\&$ Without Agency Costs	197

xi

LIST OF FIGURES

XII LIST OF FIGURES

VIII.25	Real GDP & Investment Following the Reduction of Interest Rates: With & Without Agency Costs	198
VIII.26	Trends of Loan Interest Following the Reduction of Interest Rates: With & Without Agency Costs	198
VIII.27	Trends of Unemployment Rate Following the Reduction of Interest Rates: With & Without Agency Costs	199
VIII.28	Trends of Gini Index Following the Reduction of Interest Rates: With & Without Agency Costs	199
VIII.29	Income Share of Poor Households Following the Reduction of Interest Rates: With & Without Agency Costs	200
VIII.30	Income of Poor Households Following the Reduction of Interest Rates: With & Without Agency Cost	200
VIII.31	Price of Poverty Line Following the Reduction of Interest Rates: With & Without Agency Costs	201
VIII.32	FCGE Flowchart Connecting Real-Financial Sector and Income Distribution	204
VIII.33A	Impact of Increased Bank-led Flows on Aggregate Demand	205
VIII.33B	Impact of Increased Bank-led Flows on the Exchange Rate	206
VIII.33C	Impact of Increased Bank-led Flows on Prices, Interest Rates, and Unemployment	206
VIII.34A	Impact of Increased Bank-led Flows on Poor/Rich Income Ratio	206
VIII.34B	Impact of Increased Bank-led Flows on Rural/Urban Income Ratio	207
IX.1	Incomes, Poverty Line, Food Output and Prices	217
IX.2	Demand for Food, Exports, Agriculture Share and Gini Index	218
IX.3A	Price of Domestically Produced Goods (PD): Baseline	219
IX.3B	Price of Domestically Produced Goods (PD): BAU	219
X.1	Decision Tree	241
X.2	Price Responsive Curves	244
X.3	Signaling Game	252
XI.1	Role of Institutional Factors in Decentralization: Hierarchy Model	272
XI.2	Combined Hierarchy for DCs and LDC: Conflict Resolution	277
XII.1	Linear Hierarchy	304
XII.2	Feedback Network	305
XII.3	Supermatrix of a Hierarchy	305

	LIST OF FIGURES	xiii
XII.4	Supermatrix of a Holarchy	306
XII.5	Supermatrix of a Network	306
XII.6	Entries in the Supermatrix of a Network	307
XII.7	Hierarchy of Positive Impact	311
XII.8	Hierarchy of Negative Impact	312
XII.9	Network of Positive Impacts	313
XII.10	Network of Negative Impacts	313
XII.11	Resulting Priorities for All Clusters: Benefits Network (The Case of Lampung)	318
XII.12	Resulting Priorities for All Clusters: Costs Network (The Case of Lampung)	318
XII.13A	Sensitivity Analysis in the Hierarchy Model of Economic Benefits: Intra-regional Trade	320
XII.13B	Sensitivity Analysis in the Network Model of Economic Benefits: Intra-regional Trade	320
XII.13C	Sensitivity Analysis in the Hierarchy Model of Economic Benefits: Resource Allocation	321
XII.13D	Sensitivity Analysis in the Network Model of Economic Benefits: Resource Allocation	321
XII.14A	Sensitivity Analysis in the Hierarchy Model of Other Costs: Distortion in the Eco-system	322
XII.14B	Sensitivity Analysis in the Network Model of Other Costs: Distortion in the Eco-system	322
XII.14C	Sensitivity Analysis in the Hierarchy Model of Other Costs: Pollution	323
XII.14D	Sensitivity Analysis in the Network Model of Other Costs: Pollution	323
XII.15	Searching for Preferred Form of RFA: A Framework	325
XII.16	Searching for Preferred Form of RFA: Benefit	326
XII.17	Searching for Preferred Form of RFA: Opportunity	327
XII.18	Searching for Preferred Form of RFA: Costs	328
XII.19	Searching for Preferred Form of RFA: Risks	329
XII.20	With Feedback Effects	333
XII.21	Without Feedback Effects	333
XII.22	Sensitivity with Respect to Benefit and Opportunity	334
XII.23	Sensitivity with Respect to Cost and Risk	334
XII.24	Sensitivity Analysis for Time-Dependent Case	336

LIST OF TABLES

IV.1	Input Output Framework	57
IV.2	Type-I Multiplier	61
IV.3	Type-II Multiplier	62
IV.4	Structure of SAM	65
V.1	SAM Multiplier: Jakarta (1993)	75
V.2	Selected Paths of SPA Results: Jakarta 1993	77
V.3	A Schematic SAM Classified into Three Areas	78
V.4	FOF Format For 2005 Indonesian FSAM	79
V.5	FSAM Indonesia 2005: 6-by-6 (Rp bill)	80
V.6	FSAM Indonesia 2005: 13-by-13 (Rp bill)	81
V.7	SPA Results: Foreign Equity Shock	85
V.8	SPA Results: Foreign Debt Shock	86
V.9	SPA Results: Credit Shock	88
VI.1	Baseline Result of A Simple CGE Model	111
VI.2	Baseline Result of a Simple CGE Model with IO and Transport Cost	112
		xv

LIST OF TABLES

VI.3A	Baseline Result of a Simple CGE Model with Trade	115
VI.3B	Baseline Result of A Simple CGE Model with Trade and Augmented Capital	116
VI.4	Baseline Result of a Hecksher-Ohlin Model	117
VI.5	Pollution CGE Model: Without Pollution Tax	124
VI.6	Pollution CGE Model: With Pollution Tax	125
VI.7A	Alternative Scenarios of Elasticity of Substitution	127
VI.7B	Pollution CGE Model Under Different Elasticity of Substitution	128
VII.1	Results of CGE Simulations: Indonesia 1985	150
VII.2	Elements in SAM and Jacobian (CGE) Multipliers	152
VII.3A	SAM Multiplier: Indonesia 2005	153
VII.3B	CGE-Jacobian Multiplier: Indonesia 2005 Based on Azis' Model	154
VII.4	Impacts of High Interest Rates	166
VII.5	Endogenous Poverty Measures: Benchmark and Counter-factual Simulations	171
IX.1	Average Growth Rates 2005-2050	216
X.1	Prisoner's Dilemma: General Payoffs	242
X.2	Production Choice and Market Share	243
X.3	The Case of Negative Externality	244
X.3A	Inflation and Unemployment	247
X.3B	Corresponding Payoffs	247
X.4A	CB Message Credible	247
X.4B	CB Message Not Credible	248
X.5	Signaling with a Separating Equilibrium (sender's payoff, responder's payoff)	249
X.6	Signaling with A Pooling Equilibrium at Right That Is Not Intuitive (sender's payoff, responder's payoff)	250
X.7	A Three-Player Coordination Game	257
X.8	Sensitivity Analysis	258
XI.1	Results of Field Survey: For Group in Hierarchy Model	273
XI.2	Results of Field Survey: For Group, Individuals, and Combined in Hierarchy Model	274

xvi

XI.3	Sensitivity Analysis: Removing One Region at A Time in Hierarchy Model	275
XI.4	Ranking of Goals	277
XI.5	Ranking of Goals with Weights	278
XI.6	Ranking of Targets with Respect to LDCs' Goals	278
XI.7	Relative Importance of Six Joint Actions for the Attainment of the MARKET Target	279
XI.8	Relative Values of Joint Actions for Gaining Each LDCs' Target	279
XI.9	Computation to Derive the Indirect Normalized Weight for Each Joint-Action	280
XII.1	Results of Field Survey: For Individuals in Network System	309
XII.2	Supermatrix for Benefits Using Network: Unweighted, Weighted and Limiting (The Case of Lampung)	314
XII.3	Supermatrix for Costs Using Network: Unweighted, Weighted, and Limiting (The Case of Lampung)	315
XII.4	Supermatrix for Benefits Using Hierarchy: Unweighted, Weighted and Limiting (The Case of Lampung)	316
XII.5	Supermatrix for Costs Using Hierarchy: Unweighted, Weighted, and Limiting (The Case of Lampung)	317
XII.6	Net Results (Ranking) of the Benefits Cluster with Feedback Effects	331
XII.7	Net Results (Ranking) of the Opportunity Cluster with Feedback Effects	331
XII.8	Net Results (Ranking) of the Cost Cluster with Feedback Effects	332
XII.9	Net Results (Ranking) of the Risk Cluster with Feedback Effects	332

LIST OF TABLES

xvii

PREFACE

More-than two decades of teaching and doing research at Cornell University have reinforced my conviction that students who may be doing well in math and economic theory courses could still encounter difficulty in building relevant mathematical models for economic analysis. The evidence is clearest when they are about to pick topics for their theses and dissertations. Selecting a topic with good mathematical models is always strenuous for them. The reasons behind this are various, but I am convinced that a lack of understanding about what the actual problems and the issues to be researched are, is one of them. The difficulty to link those problems with the economic theories they learned during their years at college is next on the list. At any rate, the problem has little to do with their knowledge and ability to do math or economic theory.

Almost every year before the semester began I felt a yearning for writing a book to help students overcome the predicament. The subject I had in mind was on applications of mathematical models for the analysis of actual and specific economic problems. However, a combination of my limited time, failure to meet some deadlines, and too numerous topics to cover have prevented me from doing it. Even at the time of writing I still have two books to finish, the contract on which I have already signed with the publisher back in 2011. Unfortunately, the topic of the two has nothing to do with mathematical modeling.

My subsequent appointment with an international organization made it even more difficult to spend time to write the book. Although I continue to believe that such a topic is so important for helping students to come up with quality theses, my schedule and responsibility along with the constant travels I was required to make had caused my plan to write that book a thing of the past.

Upon finishing my appointment with that organization, I resumed my teaching at Cornell but this time I decided to do it only for one semester each year and spend the other

XX PREFACE

semester abroad, including at the Faculty of Economics and Business, University of Indonesia (FEB-UI), my old alma mater. Helping FEB-UI with their curriculum and teaching some courses, including online courses, have been my main tasks. The courses I was asked to teach were those they believe need to be improved and updated. Most of them are basic and fundamental courses like microeconomics, macroeconomics, and economic modeling; others are on more specific subjects. Since I have taught most of those courses at Cornell, there was not much preparation I had to make. It is unclear if that was the triggering factor, but precisely during that time my early thought of writing a book on mathematical modeling came alive again. After discussing with some colleagues and considering the demand and suggestions from students and the TAs, I decided to write the book. And here it is.

My first and foremost debt of gratitude is to all my present and former students across the globe. It was through discussions and exchanges with them that I could develop a better understanding about what students need and what approach I should take to cater that need. The time I spent to prepare the book could have not been productive without the constant support from Erina, who stood beside me with "Heal" throughout writing this book, and who always pushes me to share knowledge with others. In rushing to prepare the manuscript, I received help from Fandy, Nabil, and Canyon whom I asked to read and edit the draft at the speed of a *Shinkansen*. I am grateful for their help. But any short-comings of the book are my responsibility.

CHAPTER 1

INTRODUCTION

A mathematical model for economic analysis is described as a formal description of relationships between variables. Some of those relationships are derived from empirical observation, others are deduced from theoretical axioms based on assumed behavior of the economic agents.

In microeconomics, examples of the relevant variables are quantities and prices of outputs and inputs, transactions costs associated with the location of producers and consumers, and the market structure. In macroeconomics, the applicable variables could be the size of aggregate output and prices, employment, the level of saving and investment, etc. In finance, things like the volume of credit, the size of equity market and bond markets, the variety of other types of securities, exchange rates, and cross-border flows of capital, are examples for which economic models are often used. How those variables interact, and what the implications of such interactions would be are questions which mathematical models in economics could help shed some light on.

But economics is a social science, so why mathematical models? Is it because mathematics itself is a science? It has been argued that mathematical models, like mathematics, are both science and art. Mathematical models may have been developed based on observations and theories, and hence have an element of science. Yet, the process of building mathematical models are also intensely creative. Making theorems or abstracting a complex economic system from nothing is much like the way a writer writes a novel or a music composer composes a song from a blank paper. In both, patterns are to be detected or invented, for which the modeler's expressiveness is limited only by his/her imagination. The challenge with thinking of mathematical models as an art is that it is harder to convince

Mathematical Models for Economic Analysis.
By Iwan J. Azis
© 2018 Department of Economics Faculty of Economics and Business Universitas Indonesia

2 INTRODUCTION

an economist to read mathematical models or sit through a lecture on economic modeling than to lure them to enjoy music, a good novel, or a well-crafted painting.

As an analyst, we observe the world and attempt to develop theories and models based on those observations. Subsequently, we validate those theories and models by using existing data before using them to predict the future, or to design policies. Hence, economic models play an important role not only in the description stage but, more importantly, also in the prediction phase. The decision and quality of policy are likely enhanced by the accuracy of model-based prediction. Indeed, the ability to describe and predict is one of the important features of economic theories and models. Without the power of prediction, those theories and models are history at best, and story at worst, with no meaningful and logical implications. Of course, data and basic hypotheses of the model will influence the final results: as the maxim goes, "garbage in, garbage out."

This book is about mathematical models relevant for economists and decision makers. From the book's perspective, mathematics or mathematical models are like a language, a method or a system of communication, the bridge between art and science. They are used to describe mundane facts like economic booms and busts, profit and loss, prosperity and poverty, and they can also be used to invent patterns and rhythms like those embedded in beautiful music, painting, or poetry.

While models have their formal, scientific and epistemological definitions, the book's emphasis is on the applications of those models. A book on mathematical economics would usually begin with the basic concepts of mathematics relevant to economic analysis. They typically include logics, sets, real numbers, discrete and continuous functions, convexity, vectors, differentiation, integration, and matrices. Although those concepts are critical for understanding economic models (and can be found in numerous textbooks or other forms of publication), they are not what I intend to cover here. Instead, the purpose of this book is to show the applications of mathematical approaches and models in economic analysis using some examples of micro and macroeconomic issues. It is intended as a reading material to accompany courses and lectures in economic modeling, mathematical economics, and/or other topics of that nature. The emphasis is to combine the concepts and models with their applications, and the goal is to help readers better understand how those models are used–and be able to conduct modeling work–for economic analysis.

For that purpose, several examples of model applications using data and computer software are presented, most of which are based on my previous work, published and unpublished. Aside from those examples, I also list some exercises (problem sets) for the differential equation in a dynamic system discussed in Chapter III, the computable general equilibrium (CGE) and financial computable general equilibrium (FCGE) model in Chapter VIII, and for the game theory in Chapter X.

One of the most difficult tasks in preparing the book manuscript is to select examples for each model. Coming up with comprehensive examples which match with the design of the models is never easy. Being comprehensive could mean covering economic, social and environmental subjects ('sustainable development' concept). The microeconomic examples are shown in the non-linear programming topic in Chapter II (price differentiation), and in game theory, the AHP, and the ANP in Chapters X, XII, and XII, respectively. Meanwhile, macroeconomic examples are highlighted in most Chapters. The social issues related to regional disparity or decentralization are taken up in Chapters II, III, XI, and XII. Income inequality and poverty are discussed in Chapters VII and VIII, and the subject of endogenous institutions in decentralization is taken up in Chapter X. Examples with environmental dimension are used to analyze the link between economic efficiency and pollution reduction by using a CGE model in Chapter VI, and the economy-wide impact of climate change using an FCGE model in Chapter IX.

Being comprehensive in examples could also mean covering regional (sub-national), national, and global dimension. Some discussions throughout the book reflect such a coverage. Yet, comprehensiveness could also be judged based on the extent to which the real sector (domestic and foreign) and the financial sector are integrated. With such an integration, the economy-wide impact of a major event, say, a financial crisis, can be well captured and analyzed in the model system. The discussions on FCGE in Chapters VIII and IX demonstrate this scenario, the data system for which is elaborated in Chapters IV and V (the social accounting matrix SAM and the FSAM). Meanwhile, the specifications of the core equations are discussed in Chapter VII.

To deepen readers' understanding about the advantage of using models for economic analysis, I show some counterfactual simulations using the CGE and FCGE models in Chapters VI, VII and VIII. While, in general, examples and counterexamples are extremely important for economic analysis, they are particularly useful for evaluating/selecting alternative policy measures. They can enhance the quality of policy debate and help reveal a deeper theory.

The classification of models into 'forecasting' and 'planning,' elaborated in Chapter IV, is also useful in understanding the distinction between the two, and to capture their interaction in order to enable the model to provide a more complete analysis. Although 'planning' models seem more relevant for decision making because the policy variables are endogenously determined, it is 'forecasting' models that could show what is possible and what is not. And this is very important in order to avoid a wishful thinking scenario. After all, economic policies must be predicated not on an ideal world but on the world as it is.

Another feature common in almost all cases is to compare the benefits, including the opportunities, and the costs including the risks, of any policies or decisions. The use of that feature is shown in the application of the Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP) discussed in Chapters XI and XII, respectively.

It is well-known that the goal of all scholarship is to provide an understanding of the principles that govern the world. For economics, it is no exception. This necessarily means developing models on which one can perform thought experiments to answer question like "How would things be different if X happened instead of Y?" Although most models and theories discussed in the book are useful for policy and decision making, the purpose of mathematical models in economics can go beyond that. They can be used more specifically to analyze and find patterns, be it economic or social patterns, and to verify or falsify specific statements about prices, location, competition and monopoly, household income and purchasing power, gross domestic product, unemployment, poverty and income distribution, interest rates, exchange rate and capital flows.

While models are useful, it is important to note that the results and implications of a model-based analysis depend on the model specifications and assumptions, which may or may not conform with reality. The conclusions derived from model simulations should therefore be taken with caution. After all, models are simplifications of reality; they are to be used but not to be trusted.

With regards to interpreting the results to draw policy implications, mathematical models, including those presented in this book, may give a set of logical solutions, but interpreting those solutions and deriving policy implications require aptitudes and senses related to motivation, design, and empathy. The nature and intensity of these aptitudes and

4 INTRODUCTION

senses could differ between users. It is in this perspective the discussions about the findings throughout the book should be interpreted.

To the extent reading and understanding models are different from actually building and using them, and given the goal of the book is to help readers to use the mathematical concepts and models for economic analysis, it is imperative for readers to conduct the analysis by developing and using some of those models. "You can't cross the sea merely by standing and staring at the water" (Rabindranath Tagore).